**pyam**: analysis and visualization of integrated-assessment scenarios ======================================================================= Release v\ |version|. |license| |pypi| |conda| |latest| |pytest-38| |pytest-37| |codecov| |rtd| |joss| |doi| .. |license| image:: https://img.shields.io/badge/License-Apache%202.0-black :target: https://github.com/IAMconsortium/pyam/blob/master/LICENSE .. |pypi| image:: https://img.shields.io/pypi/v/pyam-iamc.svg :target: https://pypi.python.org/pypi/pyam-iamc/ .. |conda| image:: https://anaconda.org/conda-forge/pyam/badges/version.svg :target: https://anaconda.org/conda-forge/pyam .. |latest| image:: https://anaconda.org/conda-forge/pyam/badges/latest_release_date.svg :target: https://anaconda.org/conda-forge/pyam .. |pytest-38| image:: https://github.com/IAMconsortium/pyam/workflows/pytest%20(3.8)/badge.svg?branch=master :target: https://github.com/IAMconsortium/pyam/actions?query=workflow%3A%22pytest+%283.8%29%22+branch%3Amaster .. |pytest-37| image:: https://github.com/IAMconsortium/pyam/workflows/pytest%20(3.7)/badge.svg?branch=master :target: https://github.com/IAMconsortium/pyam/actions?query=workflow%3A%22pytest+%283.7%29%22+branch%3Amaster .. |codecov| image:: https://codecov.io/gh/IAMconsortium/pyam/branch/master/graph/badge.svg :target: https://codecov.io/gh/IAMconsortium/pyam .. |rtd| image:: https://readthedocs.org/projects/pyam-iamc/badge/?version=latest :target: https://pyam-iamc.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |joss| image:: https://joss.theoj.org/papers/10.21105/joss.01095/status.svg :target: https://joss.theoj.org/papers/10.21105/joss.01095 .. |doi| image:: https://zenodo.org/badge/113359260.svg :target: https://zenodo.org/badge/latestdoi/113359260 Overview -------- The open-source Python package |pyam| :cite:`Gidden:2019:pyam` provides a suite of tools and functions for analyzing and visualizing input data (i.e., assumptions/parametrization) and results (model output) of integrated-assessment scenarios, energy systems analysis, and sectoral studies. Key features: ~~~~~~~~~~~~~ - Simple analysis of timeseries data in the IAMC format (more about it `here`_) |br| with an interface similar in feel & style to the widely used :class:`pandas.DataFrame` - Advanced visualization and plotting functions (see the `gallery`_) - Features for scripted validation & processing of scenario data and results The source code for |pyam| is available on `Github`_. .. _`here`: data.html .. _`gallery`: gallery/index.html .. _`Github`: https://github.com/IAMconsortium/pyam Table of Contents ----------------- .. toctree:: :maxdepth: 2 install authors contributing data tutorials gallery/index api Copyright & License ------------------- The development of the |pyam| package was started at the IIASA Energy Program, with contributions from a number of `individuals & institutions`_ over the years. The package is available under the open-source `Apache License`_. Refer to the `NOTICE`_ in the GitHub repository for more information. .. _individuals & institutions: authors.html .. _Apache License: http://www.apache.org/licenses/LICENSE-2.0.html .. _NOTICE: https://github.com/IAMconsortium/pyam/blob/master/NOTICE.md Scientific reference -------------------- .. bibliography:: _bib/index.bib :style: plain :all: